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X-ray Diffraction by a Layer Structure Containing Random Displacements 

BY W ~. COCHRA~ ~ D  E. R. HOW~LLS t 

Cavendish Laboratory, Cambridge, England 

(Received 11 February 1954) 

The diffraction pattern to be expected from crystals of hnidazole methaemoglobin, which have 
an unusual type of fault structure, is calculated and found to agree well with the experimental 
observations. 

The physical background of this problem has been 
explained in the preceding paper by Bragg & Howells 
(1954). Adopting the notation used by these authors, 
we label successive layers of molecules with the letters 
R and L. We begin by calculating the intensity distri- 
bution tha t  would be given by the R-molecules only; 
the contribution of the L-molecules will be included 
later. At present no account will be taken of the repeat 
of the pat tern  in the a direction; this, too, will be 
allowed for later. Meantime we consider only the 
relative positions of a succession of representative 
R-molecules, one in each R-layer. Take a particular 
molecule as origin. The possible positions of molecules 
at horizontal distances of c, 2c, 3c respectively are 
shown in Fig. 1. The numbers represent the proba- 
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Fig. 1. The possible positions, wi th  their  probabilit ies,  for a 
a f ew  R-molecules. 

bilities of the positions being occupied, on the as- 
sumption tha t  the first L-molecule (not shown) is as 
likely to be displaced by ½e0a as by -½80a. Let us take 
c and e0a as units of distance horizontally and verti- 
cally, and denote the probabili ty associated with the 
point (n, m) by p(n, m). By analogy with the 'random- 
walk' problem, this is the Bernoullian distribution 

(2n)! 
p(n,m) =(n+m)!(n_m)!(½)'". (1) 

Suppose now tha t  there is an infinite string of R- 
molecules in the c direction. Let us represent each 
molecule by a point at  its centre, and then form the 
vector set (Patterson func t ion)of  this set of points. 
i t  will be a non-periodic distribution of points whose 
relative weights are just the values of p(n, m). I t  will 
also be centrosymmetrical, and Fig. 1 therefore gives 

t N o w  a t  I m p e r i a l  C h e m i c a l  I n d u s t r i e s  L t d ,  B l a c k  F a n  
R o a d ,  W e l w y n  G a r d e n  C i t y ,  H e r t s . ,  E n g l a n d .  

a small section of this Patterson function on the right 
of the origin. Thus p(-n ,  m)= p(n, m). 

We now make use of the fact tha t  the Fourier trans- 
form of the Patterson function gives the distribution 
of intensity in reciprocal space. Taking coordinates 
(~, $) in reciprocal space such tha t  ~ = 1 corresponds 
to a distance c* from the origin while ~ = 1 corre- 
sponds to a perpendicular distance (s0a)*, the required 
transform is 

+c~ +n 
Sx(~, ~) = .~, Z, p(n, m) cos 2gm~ cos 2gnU. (2) 

R~---CO fn-~ --Tb 

This is the intensity tha t  corresponds to each of the 
infinite chain of R-molecules being represented by a 
point. Replacing points by molecules of structure 
factor FR(~ e, ~), the actual intensity becomes 
sl(~, ~)~R(~, ~). 

To evaluate S x, we consider first the summation 
over m. I t  is found tha t  

+n (2n)! 
"~ (n+m)! (n-m)~ (½)2n cos 2ztm~ = (cos g~)~' .  (3)  

//t~--R • " 

(This result may  be verified by expanding the right- 
hand side, in the form {½(exp [~ti~]+exp [-~ti~])} 2~, 
by the binomial expansion, and comparing individual 
terms with those on the left hand side.) The next step 
is the evaluation of 

+oo 
$1(~, ~) = 2 ~ '  (cos g~)~" cos 2~tn~. (4) 

n = 0  

We make use of the result 

oo 1 - x  cos 
X n COS ~0~ ---~ • ,=0 1 - 2 x  cos o~+x" Ix] < 1 (5) 

Remembering tha t  the term in (4) which has n = 0 
must be given half the weight of any other, we find 

1 - -  cos 4 g~ 
S I ( ~ '  ~)  = 1 - - 2  COS 2 Yg~ COS 2:r~-lt-COS 4 gl:~ " ( 6 )  

We next consider how the contribution of the L- 
molecules to the intensity is to be allowed for. Taldng 
the same origin as for Fig. 1, the possible positions 
and their probabilities for the first few of a string of 
L-molecules are shown in Fig. 2. Let q(n, m) denote 
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Fig. 2. Possible posit ions and  probabil i t ies  for a few L-mole-  
cules. The  origin is the  same as for Fig. 1. 

the probability associated with the point (n, m) ; n and 
m now assume half-integer values only. By com- 
parison with Fig. 1 we see that  

q(n, m) = ½p(n-½, m-½)+½p(n-½, m+½) 
for n~>½.  (7) 

By symmetry, q ( -n ,  m) = q(n, m). 
The vectors between centres of molecules of type L 

coincide with those we have already considered, and 
we need only note that  their contribution to the 
intensity will be 

~'1(~, ¢)F~.(~, ¢). 

Vectors between R and L molecules occur at points 
and with weights as shown (partly) in Fig. 2. By an 
argument similar to that  already used, they contribute 
to the intensity an amount 

s,(~, ~).2~'~(~, $)~'~(~, ¢), 
where 

+co +n 
$2(~, ~) = .,~ .,~ q(n, m)  cos 2~m~ cos 2zn~. (8) 

n = - - C O  ~ n ~ - - 7 / ,  

I t  is understood that  n = . s .~ • - ~ , - ~ , - t ,  +½ . . . .  
Using the result (7), we find, as in deriving (3), that  

+n 
q(n,  m)  cos 2rtm~ = (cos ~)~n+z. (9) 

Therefore 
CO 

S~(~, ~) = 2 ~ (cos ze~) ~n+l cos 2rtn~ 
n=½ 

2 cos ~(1-cos~ ~ )  cos ~ 
= 1 - 2  cos ~ g~ cos 2z~+cos a g$ " (10) 

The derivation of (10) is similar to that  of (6). 
The complete expression for the intensity is now 

I(~, ~) = Ss(~, ~ ) [ ~ + ~ ] + s ~ ( ~ ,  ~)[2FRF~]. (11) 
The final step is the introduction of the periodicity 

in the a direction. This will cause the continuous 
transform to be observable only along certain fines of 
constant ~. Since we have chosen a scale such that  

= 1 corresponds to a distance (%a) -1, the hth layer 
line from a crystal of spacing a will fall at ~ - -  
(h/a)eo a = h%. 

Graphs of the functions S1 and S~. for various fixed 
values of ~ between 0.0 and 0.5 are shown in Fig. 3. 
The functions can be continued beyond ~he range 
shown by making use of their symmetry. S~ has fines 
of symmetry at ~ = 0, ½; ~ = 0, ½, while S~ has fines 

of symmetry at ~ = 0, ~ = 0 and lines of anti-sym- 
metry at ~ = i ,  ~ = ~ .  

The results which we have obtained by using the 
'Patterson function' concept can also be obtained by 
the method of Wilson (1949). Our approach is another 
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Fig.  3. Graphs  of the  func t ions  Sz(~, ~) and  $9(~, ~) for var ious  
f ixed values  of ~. 

way of attacking statistical mistake problems of 
general type. 

C o m p a r i s o n  of  r e s u l t s  w i t h  t h o s e  of  
B r a g g  & H o w e l l s  

1. Inspection of (11) shows that  the symmetry of 
the intensity distribution in the (hO1) zone is ram. 
The crystal therefore diffracts X-rays as if it were 
orthorhombic. 

2. I t  will be noticed from Fig. 3 that  for - 0 . 3 <  ~<0.3 
we have S 1 ~ S,. Equation (11) then reduces to 

I($, ~) = $1($, ~)[FR±Fz] 2 , (12) 

the positive sign applying when ~ is closest to an even 
integer, and vice versa. Again, in the range 0.7< $< 1.3, 
we have S 1 ~ -S~, so that  (12) still holds, but the 
rule for choosing the sign is reversed. 

3. When ~ is close to 0.5, 1.5 etc., S 1 = 1 and S 2 = 0 
so that  

I($, $) = ~ R + ~ .  (13) 

4. When ~ = 0 the peaks of S 1 and of S~ are in- 
finitely narrow. For even orders S 1 = $2, and for odd, 
S 1 = - $ 9 .  Therefore, since F R = FL  in this case, 
only even orders are present on the zero layer. 

5. For small values of ~ and of ~ the exact formulae 
(6) and (10) reduce to 

2~ 
$1 = $2 ~ 4 + 4 ~  . (14) 

In this range of ~ the variation of FR and of FL is 
much slower than that  of S1, and the latter will be 
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the only factor which governs the width of a peak. 
From (14) we find tha t  in this range of ~, each peak 
has an integral width of 

area /~ = = ½ ~ .  
maximum height 

For values of ~ close to 0.5, on the other hand, the  
molecular t r an~orm is the only factor governing the 
width of a peak, as shown by  (13). 

These five conclusions agree completely with those 
reached by  Bragg & HoweUs (1954) on a more physical 
basis. We may  note tha t  their approximate calculation 
gave the ' total  width'  of a peak as 45 z, whereas the 
exact formula gives the integral width as ~y~2~2, for 
small values of ~. 

require an excessive amount of numerical work. How- 
ever, it  can be shown tha t  for the comparatively sharp 
reflexions the effect of instrumental broadening will 
be to make the intensity at  the centre of a spot just  

1"0' x ~ c ,  x ~ x 
0"9. 

0"8. 

0"7. 
X 

0"6' 

0"5~ ~ "~ x 

o ±5.~ ,_5.2 ±5 .~  __+5.4 __+5-s 
Fractional part of  

Fig. 4. A comparison of calculated (full line) and observed 
(crosses) breadths of reflexions. 

Comparison with experiment 

Before comparing these results with experiment, 
allowance must  be made for the fact tha t  even the 
sharpest reflexions on the X-ray photogral~h have a 
finite ' instrumental  width'. I t  will be remembered 
tha t  the peaks of the intensity function are infinitely 
narrow when ~ -- 0. The corresponding reflexions have 
a breadth on the photograph which is just  one half 
of the distance between successive reflexions. The 
density of a zero-layer spot is approximately constant 
across its breadth, and its integral width is therefore ½, 
in units of  c*. For reflexions on layer lines which 
correspond to near-integer values of ~, it has already 
been pointed out tha t  the factor Sz(~, $) governs the 
width of the peak in reciprocal space. For other 
values of $, the reflexions on a pai-ticular layer line 
will not all have the same integral breadth. We can, 
however, find the breadth of an 'average' reflexion 
by  taking F R to be constant, and Fz  to be zero. 
The integral width can then be shown to be given by 

Now 

where 

so that 

- '  

S b s l ( ~ ,  ¢ ) d ~  = , 
Q 

1 + cos ~ ~ 
t an  ¢~ tan  ~ ,  

1 -  cos ~ ~ 

[ 1 + cos ~ ~ ] - 1  
-- ~ arc tan l_cosZ ~-~j . (15) 

A comparison of the estimated breadth of reflexious 
with values of fl calculated from this formula is made 
in Fig. 4. The agreement is satisfactory, considering 
the difficulty of estimating the breadth of the re- 
flexions and the approximations made in deriving (15). 
A comparison of calculated and observed intensities, 
with allowance for instrumental broadening, would 

proportional to F 2 =  (FR:I:FL) 9. A comparison of 
calculated and observed values of IFI  is made in 
Table 1. The measurements and the calculations for 
this table were made by Dr M. F. Perutz. 

Table 1. Comparison 

h-= 0 { l =  

F¢ 
Fo 

of calculated and observed values 

h---- 10 
/ =  
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h----- 14 

/_--  
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Fig.  5. A compar ison of ca lcula ted (full line) a n d  observed 
(dot ted  line) in tens i ty  d is t r ibut ions  for  the  12th l ayer  line. 

The intensity on layer-line 12, for which the factional 
part  of ~ is exactly 0.5, should be given by  F 2 -- 
F~ +l~z. Values of this function for a range of values 
of ~ are compared in Fig. 5 with the photometrically. 
measured intensity variation along layer-line 12 of a 
Buerger precession photograph. 

The calculated curve has been corrected for instru. 
mental  broadening (the maximum correction was less 
than 4%). The agreement is seen to be v e r y  satis- 
factory. We consider it  unlikely tha t  calculations 
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based on any other fault-structure for the crystal 
would agree as well with the observations. 

Finally we wish t o  record our appreciation of the 
help and advice we have had from Prof. Bragg and 
Dr Perutz. 
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Formulae for the intensity distribution in reciprocal space, and for the integrated intensity and 
integral breadth of a diffraction maximum, are given for a h.c.-p, structure containing a random 
distribution of deformation faults. 

1. In troduc t ion  

The effect of faults in the stacking of the close-packed 
layers of the f.-c.c and h.c.-p, lattices has been dis- 
cussed by several authors, especially Wilson (1942, 
1949) and Paterson (1952). The diffraction effects 
depend on the origin of the faults; in particular a 
distinction has been drawn between 'growth' and 
'deformation' faulting (Barrett, 1952). More complex 
stacking sequences ('extrinsic faults') are also possible 
(Frank & Nicholas, 1953), but probably have higher 
energy. 

The faulting parameter, c~, is defined as the frac- 
tional area of all atomic close-packed planes which are 
faulted. The dissociation of lattice dislocations in close- 
packed planes gives some faults even in well annealed 
crystals, but these are insufficient to produce observ- 
able diffraction effects. Extensive faulting may be 
produced by mechanical deformation, martensitic 
transformation and (possibly) atomic growth. Con- 
sideration of the first two of these processes suggests 
that  only deformation faults in both lattices, and 
h.c.-p, growth faults are likely to be important in 
practice. Formulae have previously been given for 
growth faulting in h.c.-p, lattices and for both types 
of faulting in f.-c.c, lattices. In this note, we give the 
corresponding formulae for h.c.-p, deformation fault- 
ing. 

2. In tens i ty  d i s t r i b u t i o n  in  rec iproca l  space  

We use the same notation as Paterson (1952), except 
that  c~ is the h.c.-p, faulting parameter, and our vector 
a a is equal to the interplanar translation, so that  the 
factor ~h 3 in his expressions is replaced by h 3. The 
intensity distribution for H - K  = 3 N + l  may then be 
written 

I(HKha) 
o o  

= C[J0+ ~ {Ja exp 27dmha+(J,,, exp 2~timha)*}] 
1 

and 
Jm = f2[P°m-½ (P~m+Pm) + iV3.½. (P~+-~) ]  - 

A difference equation for the probabilities Pm may 
be obtained by considering possible sequences of 
planes in a manner similar to that  used by Paterson. 
This equation is 

p°m-p°=u(1-30¢+3~2 ) = ~x--(x 2 

and has solution 
2Q-1 m 2Q+l 

po = t + _ _ ~ e  Q + _ ~ _ ( _ e ) ~ ,  

where Q = +(1-3o~+3~9) ½ and is always real. 
Similarly 

1 - 2 ~ m  1+2~ 
P+m = P~, = ~+ 1-~Q 12e (__~)m. 

From this we find 
[2Q-1 ( , 2 e + l  J==pe=L=X~Q+-1) - - ~  ] , 

and the intensity distribution in reciprocal space is 
represented by 

I(HKha) = f2C l + ~ Q m / 2 Q - 1  ( 2Q cos 2~rmha 

+ - - ~ -  cos 2~m(h a + ½) 

= p c  [ (2e-1)(1-e ~) 
[4~(1-2Q cos 2ztha+~ ~) 

(2e+ I) ( l - e  ~) ] 
+ 4 ~ ( 1 - ~ e s ~ ( h - - j ½ ) + ~ ' ) j  " (1) 


